
PowerPC Elapsed Time
Microsecond timing

Thu, Jul 15, 1999

The PowerPC architecture includes a 64-bit TB TimeBase counter (in all chip models
except the 601) that increments in units of something like a bus clock. This note shows
how to derive a microsecond counter from this built-in counter. Although the PowerPC
is not normally programmed in assembly language, this note describes a solution in
those terms to illustrate the minimum that the code must do, no matter what language
is actually used.

The TB register is a 64-bit counter that is always activated, accessed as two 32-bit values
TBU and TBL. In order to assure integrity of the resulting 64-bit value, care must be
taken. From the PowerPC documentation we have the following code in simplified
assembler mnemonics that illustrates the method.

loop: mftbu rx #load most significant half from TBU
mftb ry #load least significant half from TBL
mftbu rz #load from TBU again
cmpw rz,rx #see if 'old' = 'new'
bne loop #repeat if two values read from TBU are unequal

Following the above code, the 64-bit value is in (rx, ry), where rx contains the most
significant 32-bits and ry the least significant 32-bits.

In order to compute a time value in microsecond units, we must scale the value
obtained above. For definiteness in the following discussion, assume that the counting
rate is about 66!MHz. To get microseconds, we must divide by 66. If the 66 value is not
exact, we may introduce a slight error. But more importantly, the divide instruction is
comparatively slow on the PowerPC. A 32-bit divide instruction might take 19 cycles,
whereas a 32-multiply may be done in 4 cycles. And one would have to divide twice, as
double precision is required. And to get the needed remainder, one must subtract the
first product obtained. We can avoid the speed penalty by multiplying by the reciprocal
of 66. This leads to the use of scaled integer calculations, if we wish to avoid using, and
therefore having to save, floating point registers.

Consider the use of scaling by 232. This means we must multiply the 64-bit value by
232/66, then shift right 32 bits to effect a divide by 232. Note that if the value 66 is not an
exact integer—it has a fractional part—we preserve precision by this method. Further,
note that a shift right of 32 bits is performed by merely selecting which word contains
the result.

Assume that we have the 64-bit value in registers rx and ry as described above. Assume
that the constant scale = 232/66 has been computed ahead of time once and for all, when
we don't care about the time required, and it is in register rz. The job here is to multiply
a 32-bit value of scale by the 64-bit value obtained from the TB register, then divide by
232. First multiply scale by the TBL and produce a double precision (64-bit) product.
Then multiply scale by the TBU and accumulate the lower half of the result with the
previous upper half of the product. Normally, this would produce a 96-bit result, which

would then be "divided" by 232 to produce a 64-bit end result in microsecond units. But
since we only need a 32-bit answer, we just take the least significant half of this 64-bit
end result. All of this analysis leads to a simplification of the steps that are required, as
follows:

mullw rv,ry,rz #compute lower half of product of TBL*scale (not
needed!)

mulhwu rw,ry,rz #compute upper half of product
mullw rt,rx,rz #compute lower half of product of TBH*scale
add rw,rw,rt #sum upper half of 1st product with lower half of 2nd

At this point, the result desired is in rw. Note that the first multiply is not needed and
may be omitted. After obtaining the value of TB in two registers, and assuming the
value of scale is in a third register, then only two multiplies and an add gives the
resultant 32-bit time in microsecond units. To illustrate this, see as follows:

rx

rw

rz

rx

rt

rw

rv (n.u.)

(n.u.)

(n.u.) (n.u.)

The diagram shows multiple precision multiplication analogous to the way we learned
arithmetic in the early grades. Here, however, each box represents a 32-bit value, rather
than a single decimal digit.

Another diagnostic time in use by the IRM-like system code is in units of 2000 Hz, or
half-milliseconds. To do this case, the value for scale merely needs to be 500 times
smaller, or scale = 232/66/500. The steps are the same as in the above logic, with the
addition of complementing the result and returning the low byte, since the byte-wide
counter was historically a decrementing counter.

PowerPC Elapsed Time p. 2

